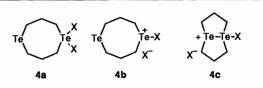

Preparation and Characterization of a Four-coordinated Ditellurane Stabilized by a Transannular Tellurium–Tellurium Bond from 1,5-Ditelluracyclooctane: A New Multicentre Hypervalent Species

Hisashi Fujihara,* Yutaka Takaguchi, Takeshi Ninoi, Tomoki Erata and Naomichi Furukawa* Department of Chemistry, and Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

1,5-Ditelluracyclooctane 1 reacted with halogens (I_2 and CI_2) to give new dihalogenoditelluranes with a Te^{IV}-Te^{IV}. Reduction of the latter with aqueous NaOH, PhSH, Na₂S and SmI₂ gave the neutral bis-telluride 1.

Although the structural and theoretical features of hypervalent organosulfur compounds, sulfuranes, have been much studied, this is not so for multi-coordinated tellurium compounds.¹⁻³ Further, much less is known about the chemistry of bis-hypervalent bonds with two adjacent hypervalent bonding species.⁴ Finally, no clear-cut example of an isolable ditellurane with a Te^{IV}-Te^{IV} bond has been hitherto reported. Recently, we reported that transannular interaction between the selenium and nitrogen atoms of *N*-methyl-5*H*,7*H*-dibenzo[*b*,*g*][1,5]-selenazocine produced the first hypervalent ammonioselenurane.⁵ We have now studied an organotellurium hypervalent species formed by a transannular reaction in medium-sized cyclic bis-tellurides: new, isolable dihalogeno ditelluranes containing a Te^{IV}-Te^{IV} bond are described.


Treatment of the bis-telluride 1 with iodine (1 equiv.) gave the diiododitellurane 2 (Scheme 1), the structure of which was confirmed by multinuclear NMR spectroscopy, mass spectrometry,

Scheme 1 Reagents: i, I_2 or Cl_2 ; ii, aq. NaOH, or PhSH, or SmI₂, or Na₂S

and elemental analysis. In the ¹³C NMR spectrum of 2 in $(CD_3)_2$ SO the methylene carbon signals are shifted to δ 28.3 and 35.1 compared with those of 1 in CDCl₃, δ 4.88 (J_{C-Te} 158 Hz) and 34.1. Also, the ¹²⁵Te NMR spectrum of 2 in Me₂SO shows a remarkable downfield shift to δ 706 from δ 164 (relative to Me_2Te) for 1 in CHCl₃. The chemical shift of 2 in the ¹²⁵Te NMR spectrum is in the range characteristic for hypervalent tellurium species.⁶ Thus, structure 2 was assigned the ditellurane, rather than 4a, 4b or 4c, on the basis of the following spectroscopic data. The ¹²⁵Te chemical shift of 2 is a single signal whilst its ¹³C NMR spectrum has two signals; the NMR spectra of 4a-c would be expected to exhibit two signals for the tellurium and three carbon chemical shifts for the 13 C. The iodine of 2 is not ionic as evidenced by the lack of a signal for such an entity in the ¹²⁷I NMR spectrum of 2 in Me₂SO. It is likely that the ditellurane 2 is formed via intermediate formation of 4a or 4b, or 4c by remote tellurium participation.

Similarly, 1 reacted with Cl_2 in CH_2Cl_2 at room temperature to afford the dichloroditellurane 3 in quantitative yield, m.p. 165 °C (decomp.), m/z 413.8441 (Calc. for $C_6H_{12}Cl_2Te_2$: M, 413.8441). The ¹²⁵Te NMR spectrum of 3 in Me₂SO shows a single resonance at 1008 ppm which is assigned to the tellurane structure.⁶ The ¹³C NMR spectrum of 3 in (CD₃)₂SO exhibits

two resonances at δ 22.9 and 38.7 (J_{C-Te} 208 Hz), while its ¹H NMR spectrum shows signals at δ 2.47–2.57 (m, 4 H) and 3.20–3.32 (m, 8 H).

Interestingly, treatment of the telluride 1 (2 equiv.) with I_2 in CCl₄ at room temperature under an Ar atmosphere, precipitated the ditellurane dimer 5 as a yellow solid in quantitative yield. The ¹³C NMR spectrum of 5 in Me₂SO shows three resonances at δ 28.7, 35.0 and 41.2, while the ¹²⁵Te NMR spectrum of 5 exhibits two tellurium signals at δ 509 and 697 in a 1:1 ratio. This is a new class of tellurane involving a multicentred bond.

It is noteworthy that the ditellurane 2 when treated with aqueous NaOH gave the telluride 1 in quantitative yield, whereas analogous treatment of the tellurane dimer 5 resulted in recovery of 5 (68%), little 1 (17%) being formed. Thiophenol (2 equiv.) reacted with 2 (1 equiv.) in the presence of triethylamine in MeCN under an Ar atmosphere at room temperature for 1 h to give diphenyl disulfide (80%) as the oxidation product and neutral 1 (76%) as the reduction product. Interestingly, 2 undergoes two-electron reduction to give 1 (88%) on treatment with samarium(II) iodide (2 equiv.),⁷ as a one-electron reductant at room temperature. The dichloroditellurane 3 can be also reduced to the neutral telluride 1 (81%) on treatment with Na₂S.

Thus, transannular tellurium participation provides a new four-coordinated chalcogenide containing a two hypervalent atom bonding centre.

Experimental

Typical Procedure.—To a solution of the bis-telluride 1⁸ (154 mg, 0.45 mmol) in benzene (10 cm³) was added a solution of iodine (128 mg, 0.50 mmol) in benzene (15 cm³), and the whole was stirred for 1 h at room temperature under an Ar atmosphere. The resulting yellow solid was filtered off and washed with benzene to give 2 (92%), m.p. 114–116 °C (decomp.); $\delta_{\rm H}[(\rm CD_3)_2\rm SO]$ 2.01–4.20 (m, 12 H); m/z 593, 595

and 597 (M⁺) (Found: C, 12.0; H, 1.8. $C_6H_{12}Te_2I_2$ requires C, 12.15; H, 2.04%).

Compound 5 was prepared in a similar way to compound 2: m.p. 103 °C (decomp.); $\delta_{H}[(CD_{3})_{2}SO]$ 2.10–3.80 (m, 24 H) (Found: C, 15.5; H, 2.2. $C_{12}H_{24}Te_{4}I_{2}$ requires C, 15.45; H, 2.59%).

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research on Priority Area of Organic Unusual Valency No. 03233101 from the Ministry of Education, Science and Culture, Japan. One of us (H. F.) thanks a Scientific Research Grant (No. 03640435) from the Ministry of Education, Science and Culture, Japan.

References

1 For a review: R. A. Hayes and J. C. Martin, Sulfurane Chemistry in Organic Sulfur Chemistry, Theoretical and Experimental Advances, eds. F. Bernardi, I. G. Csizmadia and A. Mangini, Elsevier, Amsterdam, 1985, ch. 8.

- 2 The Chemistry of Organic Selenium and Tellurium Compounds, vol. 1, eds. S. Patai and Z. Rappoport, Wiley, New York, 1986, ch. 3 and 14. The term tellurane has been used for tetracoordinate tellurium(1v) compounds.
- 3 The Organic Chemistry of Tellurium, K. J. Irgolic, Gordon and Breach Science Publishers, New York, 1974.
- 4 S^{IV}-S^{IV} bond: the existence of a S^{IV}-S^{IV} bisulfuranyl dimer, in equilibrium with a sulfuranyl radical, as evidenced by ESR and NMR spectroscopy has been reported; C. W. Perkins and J. C. Martin, J. Am. Chem. Soc., 1986, **108**, 3211.
- 5 H. Fujihara, H. Mima, M. Ikemori and N. Furukawa, J. Am. Chem. Soc., 1991, 113, 6337.
- 6 Ch. 6 of ref. 2.
- 7 P. Girard, J. L. Namy and H. B. Kagan, J. Am. Chem. Soc., 1980, 102, 2693; J. A. Soderquist, Aldrichimica Acta, 1991, 24, 15.
- 8 H. Fujihara, T. Ninoi, R. Akaishi, T. Erata and N. Furukawa, *Tetrahedron Lett.*, 1991, **32**, 4537.

Paper 2/04539G Received 24th August 1992 Accepted 24th August 1992